Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
J Biol Chem ; 298(9): 102338, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931114

RESUMO

The obligate intracellular bacteria Chlamydia trachomatis obtain all nutrients from the cytoplasm of their epithelial host cells and stimulate glucose uptake by these cells. They even hijack host ATP, exerting a strong metabolic pressure on their host at the peak of the proliferative stage of their developmental cycle. However, it is largely unknown whether infection modulates the metabolism of the host cell. Also, the reliance of the bacteria on host metabolism might change during their progression through their biphasic developmental cycle. Herein, using primary epithelial cells and 2 cell lines of nontumoral origin, we showed that between the 2 main ATP-producing pathways of the host, oxidative phosphorylation (OxPhos) remained stable and glycolysis was slightly increased. Inhibition of either pathway strongly reduced bacterial proliferation, implicating that optimal bacterial growth required both pathways to function at full capacity. While we found C. trachomatis displayed some degree of energetic autonomy in the synthesis of proteins expressed at the onset of infection, functional host glycolysis was necessary for the establishment of early inclusions, whereas OxPhos contributed less. These observations correlated with the relative contributions of the pathways in maintaining ATP levels in epithelial cells, with glycolysis contributing the most. Altogether, this work highlights the dependence of C. trachomatis on both host glycolysis and OxPhos for efficient bacterial replication. However, ATP consumption appears at equilibrium with the normal production capacity of the host and the bacteria, so that no major shift between these pathways is required to meet bacterial needs.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Células Epiteliais , Glicólise , Interações Hospedeiro-Patógeno , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Glucose/metabolismo , Células HeLa , Humanos
2.
Pathog Dis ; 79(9)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34918079

RESUMO

Mycoplasma contamination of cell culture represents a serious problem in research and decontamination from cell-propagated obligate intracellular bacteria has proven challenging. Here, we presented an optimized protocol to remove Mycoplasma from contaminated Chlamydia trachomatis culture. A stepwise procedure of Mycoplasma removal entails (i) incubation in nonionic detergent-containing solution and (ii) separation of viable chlamydial organisms by fluorescence-activated cell sorting (FACS), followed by subcloning using a focus-forming assay. We also adapted a polymerase chain reaction (PCR) assay using paired universal and Mycoplasma-specific primers, which are distinguishable from the C. trachomatis counterparts, in combination with Sanger sequencing to determine the presence of mycoplasmas' 16S rRNA genes. These integrated approaches allow for full removal of Mycoplasma, as verified by the improved PCR assay, without compromising the capacity of viable C. trachomatis to adapt to new infection in epithelial cells. Some pitfalls during the Mycoplasma decontamination process are discussed.


Assuntos
Técnicas de Cultura de Células , Chlamydia trachomatis/crescimento & desenvolvimento , Descontaminação/métodos , Mycoplasma/crescimento & desenvolvimento , Células Cultivadas , Chlamydia trachomatis/genética , Humanos
3.
PLoS One ; 16(12): e0261088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914750

RESUMO

Plasmid transformation of chlamydiae has created new opportunities to investigate host-microbe interactions during chlamydial infections; however, there are still limitations. Plasmid transformation requires a replicon derived from the native Chlamydia plasmid, and these transformations are species-specific. We explored the utility of a broad host-range plasmid, pBBR1MCS-4, to transform chlamydiae, with a goal of simplifying the transformation process. The plasmid was modified to contain chromosomal DNA from C. trachomatis to facilitate homologous recombination. Sequences flanking incA were cloned into the pBBR1MCS-4 vector along with the GFP:CAT cassette from the pSW2-GFP chlamydial shuttle vector. The final plasmid construct, pBVR2, was successfully transformed into C. trachomatis strain L2-434. Chlamydial transformants were analyzed by immunofluorescence microscopy and positive clones were sequentially purified using limiting dilution. PCR and PacBio-based whole genome sequencing were used to determine if the plasmid was maintained within the chromosome or as an episome. PacBio sequencing of the cloned transformants revealed allelic exchange events between the chromosome and plasmid pBVR2 that replaced chromosomal incA with the plasmid GFP:CAT cassette. The data also showed evidence of full integration of the plasmid into the bacterial chromosome. While some plasmids were fully integrated, some were maintained as episomes and could be purified and retransformed into E. coli. Thus, the plasmid can be successfully transformed into chlamydia without a chlamydial origin of replication and can exist in multiple states within a transformed population.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Cromossomos Bacterianos/genética , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Plasmídeos/genética , Transformação Bacteriana , Chlamydia trachomatis/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética
4.
Front Immunol ; 12: 717311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819931

RESUMO

Aims: Neutrophil granulocytes are the major cells involved in Chlamydia trachomatis (C. trachomatis)-mediated inflammation and histopathology. A key protein in human intracellular antichlamydial defense is the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) which limits the growth of the tryptophan auxotroph Chlamydia. Despite its importance, the role of IDO in the intracellular defense against Chlamydia in neutrophils is not well characterized. Methods: Global gene expression screen was used to evaluate the effect of C. trachomatis serovar D infection on the transcriptome of human neutrophil granulocytes. Tryptophan metabolite concentrations in the Chlamydia-infected and/or interferon-gamma (IFNG)-treated neutrophils were measured by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Results: Our results indicate that the C. trachomatis infection had a major impact on neutrophil gene expression, inducing 1,295 genes and repressing 1,510 genes. A bioinformatics analysis revealed that important factors involved in the induction of neutrophil gene expression were the interferon-related transcription factors such as IRF1-5, IRF7-9, STAT2, ICSB, and ISGF3. One of the upregulated genes was ido1, a known infection- and interferon-induced host gene. The tryptophan-degrading activity of IDO1 was not induced significantly by Chlamydia infection alone, but the addition of IFNG greatly increased its activity. Despite the significant IDO activity in IFNG-treated cells, C. trachomatis growth was not affected by IFNG. This result was in contrast to what we observed in HeLa human cervical epithelial cells, where the IFNG-mediated inhibition of C. trachomatis growth was significant and the IFNG-induced IDO activity correlated with growth inhibition. Conclusions: IDO activity was not able to inhibit chlamydial growth in human neutrophils. Whether the IDO activity was not high enough for inhibition or other chlamydial growth-promoting host mechanisms were induced in the infected and interferon-treated neutrophils needs to be further investigated.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neutrófilos/enzimologia , Triptofano/metabolismo , Infecções por Chlamydia/enzimologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/metabolismo , Células HL-60 , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Interferon gama/farmacologia , Metaboloma , Neutrófilos/efeitos dos fármacos , Transcriptoma
5.
Biomed Res Int ; 2021: 8889247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791384

RESUMO

The obligate intracellular bacterium Chlamydia trachomatis is a group of worldwide human pathogens that can lead to serious reproductive problems. The frequent clinical treatment failure promoted the development of novel antichlamydial agents. Here, we firstly reported a group of pyrroloisoxazolidine-inhibited C. trachomatis in a dose-dependent manner in vitro. Among them, compounds 1 and 2 exhibited the strongest inhibitory activity with IC50 values from 7.25 to 9.73 µM. The compounds disturbed the whole intracellular life cycle of C. trachomatis, mainly targeting the middle reticulate body proliferation stages. Besides, the compounds partially inhibited the chlamydial infection by reducing elementary body infectivity at high concentration. Our findings suggest the potential of pyrroloisoxazolidine derivatives as promising lead molecules for the development of antichlamydial agents.


Assuntos
Antibacterianos , Chlamydia trachomatis/crescimento & desenvolvimento , Linfogranuloma Venéreo/tratamento farmacológico , Antibacterianos/química , Antibacterianos/farmacologia , Células HeLa , Humanos , Linfogranuloma Venéreo/metabolismo , Linfogranuloma Venéreo/patologia
6.
PLoS One ; 16(4): e0249358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857160

RESUMO

Chlamydia trachomatis infects squamous and columnar epithelia at the mucosal surface. Research on gene expression patterns of C. trachomatis has predominantly focused on non-native host cells, with limited data on growth kinetics and gene expression of chlamydia in keratinocytes. Here, we investigated whether early, mid, and late chlamydial genes observed in HeLa cell line studies were co-ordinately regulated at the transcriptional level even in the keratinized cell line model and whether the expression was stage-specific during the developmental cycle. HaCaT cell lines were infected with chlamydia clinical isolates (US151and serovar E) and reference strain (L2 434). Expression of groEL-1, incB, pyk-F, tal, hctA, and omcB genes was conducted with comparative real-time PCR and transcriptional events during the chlamydial developmental cycle using transmission electron microscopy. The relative expression level of each gene and fold difference were calculated using the 2-ΔΔCT method. The expression of groEL-1 and pyk-F genes was highest at 2 hours post-infection (hpi) in the L2 434 and serovar E. The expression of incB gene increased at 2 hpi in L2 434 and serovar E but peaked at 12 hpi in serovar E. L2 434 and US151 had similar tal expression profiles. Increased expression of hctA and omcB genes were found at 2 and 36 hpi in L2 434. Both clinical isolates and reference strains presented the normal chlamydial replication cycle comprising elementary bodies and reticulate bodies within 36 hpi. We show different gene expression patterns between clinical isolates and reference strain during in vitro infection of keratinocytes, with reference strain-inducing consistent expression of genes. These findings confirm that keratinocytes are appropriate cell lines to interrogate cell differentiation, growth kinetics, and gene expression of C. trachomatis infection. Furthermore, more studies with different clinical isolates and genes are needed to better understand the Chlamydial pathogenesis in keratinocytes.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Regulação Bacteriana da Expressão Gênica , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Fatores de Tempo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo
7.
Pathog Dis ; 79(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33693620

RESUMO

Chlamydia trachomatis is the most commonly reported sexually transmitted infection in the United States. The high prevalence of infection and lack of a vaccine indicate a critical knowledge gap surrounding the host's response to infection and how to effectively generate protective immunity. The immune response to C. trachomatis is complex, with cells of the adaptive immune system playing a crucial role in bacterial clearance. Here, we discuss the CD4+ and CD8+ T cell response to Chlamydia, the importance of antigen specificity and the role of memory T cells during the recall response. Ultimately, a deeper understanding of protective immune responses is necessary to develop a vaccine that prevents the inflammatory diseases associated with Chlamydia infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/patogenicidade , Evasão da Resposta Imune , Imunidade Adaptativa , Animais , Carga Bacteriana , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/microbiologia , Infecções por Chlamydia/complicações , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/crescimento & desenvolvimento , Chlamydia muridarum/imunologia , Chlamydia muridarum/patogenicidade , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/imunologia , Genitália/imunologia , Genitália/microbiologia , Genitália/patologia , Humanos , Imunidade Inata , Memória Imunológica , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucinas/biossíntese , Interleucinas/imunologia , Camundongos
8.
Sci Rep ; 11(1): 5848, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712643

RESUMO

The tumoral origin and extensive passaging of HeLa cells, a most commonly used cervical epithelial cell line, raise concerns on their suitability to study the cell responses to infection. The present study was designed to isolate primary epithelial cells from human ectocervix explants and characterize their susceptibility to C. trachomatis infection. We achieved a high purity of isolation, assessed by the expression of E-cadherin and cytokeratin 14. The infectious progeny in these primary epithelial cells was lower than in HeLa cells. We showed that the difference in culture medium, and the addition of serum in HeLa cultures, accounted for a large part of these differences. However, all things considered the primary ectocervical epithelial cells remained less permissive than HeLa cells to C. trachomatis serovar L2 or D development. Finally, the basal level of transcription of genes coding for pro-inflammatory cytokines was globally higher in primary epithelial cells than in HeLa cells. Transcription of several pro-inflammatory genes was further induced by infection with C. trachomatis serovar L2 or serovar D. In conclusion, primary epithelial cells have a strong capacity to mount an inflammatory response to Chlamydia infection. Our simplified purification protocol from human explants should facilitate future studies to understand the contribution of this response to limiting the spread of the pathogen to the upper female genital tract.


Assuntos
Colo do Útero/patologia , Chlamydia trachomatis/fisiologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Inflamação/patologia , Proliferação de Células , Separação Celular , Forma Celular , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Células Epiteliais/imunologia , Feminino , Fibroblastos/microbiologia , Células HeLa , Humanos , Imunidade
9.
Pathog Dis ; 79(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33538819

RESUMO

Chlamydiae are pathogenic intracellular bacteria that cause a wide variety of diseases throughout the globe, affecting the eye, lung, coronary arteries and female genital tract. Rather than by direct cellular toxicity, Chlamydia infection generally causes pathology by inducing fibrosis and scarring that is largely mediated by host inflammation. While a robust immune response is required for clearance of the infection, certain elements of that immune response may also damage infected tissue, leading to, in the case of female genital infection, disease sequelae such as pelvic inflammatory disease, infertility and ectopic pregnancy. It has become increasingly clear that the components of the immune system that destroy bacteria and those that cause pathology only partially overlap. In the ongoing quest for a vaccine that prevents Chlamydia-induced disease, it is important to target mechanisms that can achieve protective immunity while preventing mechanisms that damage tissue. This review focuses on mouse models of genital Chlamydia infection and synthesizes recent studies to generate a comprehensive model for immunity in the murine female genital tract, clarifying the respective contributions of various branches of innate and adaptive immunity to both host protection and pathogenic genital scarring.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia trachomatis/patogenicidade , Cicatriz/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferon gama/imunologia , Interleucinas/imunologia , Imunidade Adaptativa , Animais , Carga Bacteriana , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Infecções por Chlamydia/complicações , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/crescimento & desenvolvimento , Chlamydia muridarum/imunologia , Chlamydia muridarum/patogenicidade , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/imunologia , Cicatriz/complicações , Cicatriz/microbiologia , Cicatriz/patologia , Modelos Animais de Doenças , Feminino , Genitália/imunologia , Genitália/microbiologia , Genitália/patologia , Humanos , Imunidade Inata , Interferon gama/biossíntese , Interleucinas/biossíntese , Camundongos , Gravidez
10.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468693

RESUMO

Chlamydia trachomatis is a medically significant human pathogen and is an epithelial-tropic obligate intracellular parasite. Invasion of nonprofessional phagocytes represents a crucial step in the infection process and has likely promoted the evolution of a redundant mechanism and routes of entry. Like many other viral and invasive bacterial pathogens, manipulation of the host cell cytoskeleton represents a focal point in Chlamydia entry. The advent of genetic techniques in C. trachomatis, such as creation of complete gene deletions via fluorescence-reported allelic exchange mutagenesis (FRAEM), is providing important tools to unravel the contributions of bacterial factors in these complex pathways. The type III secretion chaperone Slc1 directs delivery of at least four effectors during the invasion process. Two of these, TarP and TmeA, have been associated with manipulation of actin networks and are essential for normal levels of invasion. The functions of TarP are well established, whereas TmeA is less well characterized. We leverage chlamydial genetics and proximity labeling here to provide evidence that TmeA directly targets host N-WASP to promote Arp2/3-dependent actin polymerization. Our work also shows that TmeA and TarP influence separate, yet synergistic pathways to accomplish chlamydial entry. These data further support an appreciation that a pathogen, confined by a reductionist genome, retains the ability to commit considerable resources to accomplish bottle-neck steps during the infection process.IMPORTANCE The increasing genetic tractability of Chlamydia trachomatis is accelerating the ability to characterize the unique infection biology of this obligate intracellular parasite. These efforts are leading to a greater understanding of the molecular events associated with key virulence requirements. Manipulation of the host actin cytoskeleton plays a pivotal role throughout Chlamydia infection, yet a thorough understanding of the molecular mechanisms initiating and orchestrating actin rearrangements has lagged. Our work highlights the application of genetic manipulation to address open questions regarding chlamydial invasion, a process essential to survival. We provide definitive insight regarding the role of the type III secreted effector TmeA and how that activity relates to another prominent effector, TarP. In addition, our data implicate at least one source that contributes to the functional divergence of entry mechanisms among chlamydial species.


Assuntos
Actinas/genética , Proteínas de Bactérias/genética , Chlamydia trachomatis/genética , Citoesqueleto/metabolismo , Chaperonas Moleculares/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína 2 Relacionada a Actina/genética , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/genética , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Citoesqueleto/microbiologia , Citoesqueleto/ultraestrutura , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Chaperonas Moleculares/metabolismo , Polimerização , Transdução de Sinais , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
BMC Microbiol ; 21(1): 3, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397284

RESUMO

BACKGROUND: Chlamydia trachomatis is the most common sexually transmitted infection and the bacterial agent of trachoma globally. C. trachomatis undergoes a biphasic developmental cycle involving an infectious elementary body and a replicative reticulate body. Little is currently known about the gene expression dynamics of host cell mRNAs, lncRNAs, and miRNAs at different stages of C. trachomatis development. RESULTS: Here, we performed RNA-seq and miR-seq on HeLa cells infected with C. trachomatis serovar E at 20 h post-infection (hpi) and 44 hpi with or without IFN-γ treatment. Our study identified and validated differentially expressed host cell mRNAs, lncRNAs, and miRNAs during infection. Host cells at 20 hpi showed the most differential upregulation of both coding and non-coding genes while at 44 hpi in the presence of IFN-γ resulted in a dramatic downregulation of a large proportion of host genes. Using RT-qPCR, we validated the top 5 upregulated mRNAs and miRNAs, which are specific for different stages of C. trachomatis development. One of the commonly expressed miRNAs at all three stages of C. trachomatis development, miR-193b-5p, showed significant expression in clinical serum samples of C. trachomatis-infected patients as compared to sera from healthy controls and HIV-1-infected patients. Furthermore, we observed significant upregulation of antigen processing and presentation, and T helper cell differentiation pathways at 20 hpi whereas T cell receptor, mTOR, and Rap1 pathways were modulated at 44 hpi. Treatment with IFN-γ at 44 hpi showed the upregulation of cytokine-cytokine receptor interaction, FoxO signaling, and Ras signaling pathways. CONCLUSIONS: Our study documented transcriptional manipulation of the host cell genomes and the upregulation of stage-specific signaling pathways necessary for the survival of the pathogen and could serve as potential biomarkers in the diagnosis and management of the disease.


Assuntos
Infecções por Chlamydia/genética , Chlamydia trachomatis/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Transdução de Sinais , Estudos de Casos e Controles , Infecções por Chlamydia/sangue , Chlamydia trachomatis/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/sangue , Infecções por HIV/genética , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/farmacologia , MicroRNAs/sangue , RNA Longo não Codificante/sangue , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
12.
J Med Microbiol ; 69(12): 1351-1366, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33180014

RESUMO

Introduction . Chlamydia trachomatis (Ct) is an obligate intracellular bacterium, causing a range of diseases in humans. Interactions between chlamydiae and antibiotics have been extensively studied in the past.Hypothesis/Gap statement: Chlamydial interactions with non-antibiotic drugs have received less attention and warrant further investigations. We hypothesized that selected cytokine inhibitors would alter Ct growth characteristics in HeLa cells.Aim. To investigate potential interactions between selected cytokine inhibitors and Ct development in vitro.Methodology. The CCR5 receptor antagonist maraviroc (Mara; clinically used as HIV treatment), the triterpenoid celastrol (Cel; used in traditional Chinese medicine) and the histamine H1 receptor antagonist azelastine (Az; clinically used to treat allergic rhinitis and conjunctivitis) were used in a genital in vitro model of Ct serovar E infecting human adenocarcinoma cells (HeLa).Results. Initial analyses revealed no cytotoxicity of Mara up to 20 µM, Cel up to 1 µM and Az up to 20 µM. Mara exposure (1, 5, 10 and 20 µM) elicited a reduction of chlamydial inclusion numbers, while 10 µM reduced chlamydial infectivity. Cel 1 µM, as well as 10 and 20 µM Az, reduced chlamydial inclusion size, number and infectivity. Morphological immunofluorescence and ultrastructural analysis indicated that exposure to 20 µM Az disrupted chlamydial inclusion structure. Immunofluorescence evaluation of Cel-incubated inclusions showed reduced inclusion sizes whilst Mara incubation had no effect on inclusion morphology. Recovery assays demonstrated incomplete recovery of chlamydial infectivity and formation of structures resembling typical chlamydial inclusions upon Az removal.Conclusion. These observations indicate that distinct mechanisms might be involved in potential interactions of the drugs evaluated herein and highlight the need for continued investigation of the interaction of commonly used drugs with Chlamydia and its host.


Assuntos
Chlamydia trachomatis/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Maraviroc/farmacologia , Ftalazinas/farmacologia , Triterpenos/farmacologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/ultraestrutura , Células HeLa , Humanos , Indicadores e Reagentes , Testes de Sensibilidade Microbiana , Oxazinas , Triterpenos Pentacíclicos , Xantenos
13.
mBio ; 11(5)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873765

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium that undergoes a complex developmental cycle in which the bacterium differentiates between two functionally and morphologically distinct forms, the elementary body (EB) and reticulate body (RB), each of which expresses its own specialized repertoire of proteins. Both primary (EB to RB) and secondary (RB to EB) differentiations require protein turnover, and we hypothesize that proteases are critical for mediating differentiation. The Clp protease system is well conserved in bacteria and important for protein turnover. Minimally, the system relies on a serine protease subunit, ClpP, and an AAA+ ATPase, such as ClpX, that recognizes and unfolds substrates for ClpP degradation. In Chlamydia, ClpX is encoded within an operon 3' to clpP2 We present evidence that the chlamydial ClpX and ClpP2 orthologs are essential to organism viability and development. We demonstrate here that chlamydial ClpX is a functional ATPase and forms the expected homohexamer in vitro Overexpression of a ClpX mutant lacking ATPase activity had a limited impact on DNA replication or secondary differentiation but, nonetheless, reduced EB viability with observable defects in EB morphology noted. Conversely, overexpression of a catalytically inactive ClpP2 mutant significantly impacted developmental cycle progression by reducing the overall number of organisms. Blocking clpP2X transcription using CRISPR interference led to a decrease in bacterial growth, and this effect was complemented in trans by a plasmid copy of clpP2 Taken together, our data indicate that ClpX and the associated ClpP2 serve distinct functions in chlamydial developmental cycle progression and differentiation.IMPORTANCEChlamydia trachomatis is the leading cause of infectious blindness globally and the most reported bacterial sexually transmitted infection both domestically and internationally. Given the economic burden, the lack of an approved vaccine, and the use of broad-spectrum antibiotics for treatment of infections, an understanding of chlamydial growth and development is critical for the advancement of novel targeted antibiotics. The Clp proteins comprise an important and conserved protease system in bacteria. Our work highlights the importance of the chlamydial Clp proteins to this clinically important bacterium. Additionally, our study implicates the Clp system playing an integral role in chlamydial developmental cycle progression, which may help establish models of how Chlamydia spp. and other bacteria progress through their respective developmental cycles. Our work also contributes to a growing body of Clp-specific research that underscores the importance and versatility of this system throughout bacterial evolution and further validates Clp proteins as drug targets.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/genética , Endopeptidase Clp/genética , Serina Endopeptidases/genética , Adenosina Trifosfatases/genética , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Chlamydia trachomatis/metabolismo , Endopeptidase Clp/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Camundongos , Viabilidade Microbiana/genética , Serina Endopeptidases/metabolismo
14.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32900818

RESUMO

The obligate intracellular pathogen Chlamydia trachomatis is the leading cause of noncongenital blindness and causative agent of the most common sexually transmitted infection of bacterial origin. With a reduced genome, C. trachomatis is dependent on its host for survival, in part due to a need for the host cell to compensate for incomplete bacterial metabolic pathways. However, relatively little is known regarding how C. trachomatis is able to hijack host cell metabolism. In this study, we show that two host glycolytic enzymes, aldolase A and pyruvate kinase, as well as lactate dehydrogenase, are enriched at the C. trachomatis inclusion membrane during infection. Inclusion localization was not species specific, since a similar phenotype was observed with C. muridarum Time course experiments showed that the number of positive inclusions increased throughout the developmental cycle. In addition, these host enzymes colocalized to the same inclusion, and their localization did not appear to be dependent on sustained bacterial protein synthesis or on intact host actin, vesicular trafficking, or microtubules. Depletion of the host glycolytic enzyme aldolase A resulted in decreased inclusion size and infectious progeny production, indicating a role for host glycolysis in bacterial growth. Finally, quantitative PCR analysis showed that expression of C. trachomatis glycolytic enzymes inversely correlated with host enzyme localization at the inclusion. We discuss potential mechanisms leading to inclusion localization of host glycolytic enzymes and how it could benefit the bacteria. Altogether, our findings provide further insight into the intricate relationship between host and bacterial metabolism during Chlamydia infection.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Glicólise , Interações entre Hospedeiro e Microrganismos , Corpos de Inclusão/metabolismo , L-Lactato Desidrogenase/metabolismo , Piruvato Quinase/metabolismo , Actinas/metabolismo , Membrana Externa Bacteriana/enzimologia , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Chlamydia/enzimologia , Infecções por Chlamydia/genética , Chlamydia muridarum/metabolismo , Chlamydia trachomatis/enzimologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/patogenicidade , Frutose-Bifosfato Aldolase/genética , Células HeLa , Humanos , Corpos de Inclusão/enzimologia , Corpos de Inclusão/microbiologia , L-Lactato Desidrogenase/genética , Microtúbulos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Piruvato Quinase/genética
15.
Nat Microbiol ; 5(11): 1390-1402, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32747796

RESUMO

Obligate intracellular bacteria such as Chlamydia trachomatis undergo a complex developmental cycle between infectious, non-replicative elementary-body and non-infectious, replicative reticulate-body forms. Elementary bodies transform to reticulate bodies shortly after entering a host cell, a crucial process in infection, initiating chlamydial replication. As Chlamydia fail to replicate outside the host cell, it is unknown how the replicative part of the developmental cycle is initiated. Here we show, using a cell-free approach in axenic media, that the uptake of glutamine by the bacteria is crucial for peptidoglycan synthesis, which has a role in Chlamydia replication. The increased requirement for glutamine in infected cells is satisfied by reprogramming the glutamine metabolism in a c-Myc-dependent manner. Glutamine is effectively taken up by the glutamine transporter SLC1A5 and metabolized via glutaminase. Interference with this metabolic reprogramming limits the growth of Chlamydia. Intriguingly, Chlamydia failed to produce progeny in SLC1A5-knockout organoids and mice. Thus, we report on the central role of glutamine for the development of an obligate intracellular pathogenic bacterium and the reprogramming of host glutamine metabolism, which may provide a basis for innovative anti-infection strategies.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/fisiologia , Glutamina/metabolismo , Peptidoglicano/biossíntese , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais
16.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32601108

RESUMO

Chlamydia trachomatis infection of the human fallopian tubes can lead to damaging inflammation and scarring, ultimately resulting in infertility. To study the human cellular responses to chlamydial infection, researchers have frequently used transformed cell lines that can have limited translational relevance. We developed a primary human fallopian tube epithelial cell model based on a method previously established for culture of primary human bronchial epithelial cells. After protease digestion and physical dissociation of excised fallopian tubes, epithelial cell precursors were expanded in growth factor-containing medium. Expanded cells were cryopreserved to generate a biobank of cells from multiple donors and cultured at an air-liquid interface. Culture conditions stimulated cellular differentiation into polarized mucin-secreting and multiciliated cells, recapitulating the architecture of human fallopian tube epithelium. The polarized and differentiated cells were infected with a clinical isolate of C. trachomatis, and inclusions containing chlamydial developmental forms were visualized by fluorescence and electron microscopy. Apical secretions from infected cells contained increased amounts of proteins associated with chlamydial growth and replication, including transferrin receptor protein 1, the amino acid transporters SLC3A2 and SLC1A5, and the T-cell chemoattractants CXCL10, CXCL11, and RANTES. Flow cytometry revealed that chlamydial infection induced cell surface expression of T-cell homing and activation proteins, including ICAM-1, VCAM-1, HLA class I and II, and interferon gamma receptor. This human fallopian tube epithelial cell culture model is an important tool with translational potential for studying cellular responses to Chlamydia and other sexually transmitted pathogens.


Assuntos
Células Epiteliais/imunologia , Regulação da Expressão Gênica/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Linfócitos T/imunologia , Adulto , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quimiocina CXCL11/genética , Quimiocina CXCL11/imunologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/imunologia , Células Epiteliais/microbiologia , Tubas Uterinas/citologia , Tubas Uterinas/cirurgia , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Modelos Biológicos , Cultura Primária de Células , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia , Salpingectomia , Linfócitos T/microbiologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
17.
J Vis Exp ; (160)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32597859

RESUMO

The intracellular bacterial pathogen Chlamydia trachomatis undergoes a developmental cycle consisting of two morphologically discrete developmental forms. The non-replicative elementary body (EB) initiates infection of the host. Once inside, the EB differentiates into the reticulate body (RB). The RB then undergoes multiple rounds of replication, before differentiating back to the infectious EB form. This cycle is essential for chlamydial survival as failure to switch between cell types prevents either host invasion or replication. Limitations in genetic techniques due to the obligate intracellular nature of Chlamydia have hampered identification of the molecular mechanisms involved in the cell-type development. We designed a novel dual promoter-reporter plasmid system that, in conjunction with live-cell microscopy, allows for the visualization of cell type switching in real time. To identify genes involved in the regulation of cell-type development, the live-cell promoter-reporter system was leveraged for the development of a forward genetic approach by combining chemical mutagenesis of the dual reporter strain, imaging and tracking of Chlamydia with altered developmental kinetics, followed by clonal isolation of mutants. This forward genetic workflow is a flexible tool that can be modified for directed interrogation into a wide range of genetic pathways.


Assuntos
Chlamydia trachomatis/genética , Chlamydia trachomatis/isolamento & purificação , Genômica/métodos , Mutação/genética , Chlamydia trachomatis/crescimento & desenvolvimento , Análise de Dados , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Humanos , Cinética , Mutagênese/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes
18.
Cell Rep ; 31(7): 107667, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433976

RESUMO

Human guanylate binding protein 1 (hGBP1) belongs to the dynamin superfamily of GTPases and conveys host defense against intracellular bacteria and parasites. During infection, hGBP1 is recruited to pathogen-containing vacuoles, such as Chlamydia trachomatis inclusions, restricts pathogenic growth, and induces the activation of the inflammasome pathway. hGBP1 has a unique catalytic activity to hydrolyze guanosine triphosphate (GTP) to guanosine monophosphate (GMP) in two consecutive cleavage steps. However, the functional significance of this activity in host defense remains elusive. Here, we generate a structure-guided mutant that specifically abrogates GMP production, while maintaining fast cooperative GTP hydrolysis. Complementation experiments in human monocytes/macrophages show that hGBP1-mediated GMP production is dispensable for restricting Chlamydia trachomatis growth but is necessary for inflammasome activation. Mechanistically, GMP is catabolized to uric acid, which in turn activates the NLRP3 inflammasome. Our study demonstrates that the unique enzymology of hGBP1 coordinates bacterial growth restriction and inflammasome signaling.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia trachomatis/crescimento & desenvolvimento , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Inflamassomos/metabolismo , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , GMP Cíclico , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Nucleotídeos de Guanina/metabolismo , Humanos , Hidrólise , Inflamassomos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Células THP-1 , Ácido Úrico/metabolismo
19.
Microbes Infect ; 22(9): 441-450, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32442683

RESUMO

Chlamydia trachomatis LGV (CtL2) causes systemic infection and proliferates in lymph nodes as well as genital tract or rectum producing a robust inflammatory response, presumably leading to a low oxygen environment. We therefore assessed how CtL2 growth in immortal human epithelial cells adapts to hypoxic conditions. Assessment of inclusion forming units, the quantity of chlamydial 16S rDNA, and inclusion size showed that hypoxia promotes CtL2 growth. Under hypoxia, HIF-1α was stabilized and p53 was degraded in infected cells. Moreover, AKT was strongly phosphorylated at S473 by CtL2 infection. This activation was significantly diminished by LY-294002, a PI3K-AKT inhibitor, which decreased the number of CtL2 progeny. HIF-1α stabilizers (CoCl2, desferrioxamine) had no effect on increasing CtL2 growth, indicating no autocrine impact of growth factors produced by HIF-1α stabilization. Furthermore, in normoxia, CtL2 infection changed the NAD+/NADH ratio of cells with increased gapdh expression; in contrast, under hypoxia, the NAD+/NADH ratio was the same in infected and uninfected cells with high and stable expression of gapdh, suggesting that CtL2-infected cells adapted better to hypoxia. Together, these data indicate that hypoxia promotes CtL2 growth in immortal human epithelial cells by activating the PI3K-AKT pathway and maintaining the NAD+/NADH ratio with stably activated glycolysis.


Assuntos
Chlamydia trachomatis/metabolismo , Células Epiteliais/metabolismo , Hipóxia/metabolismo , NAD/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Chlamydia trachomatis/genética , Chlamydia trachomatis/crescimento & desenvolvimento , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação
20.
J Bacteriol ; 202(15)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32424009

RESUMO

Chlamydia trachomatis Scc4 (formerly CT663) engages the transcription machinery and the pathogenic type III secretion system (T3SS). Both machines are required for Chlamydia infection. These requirements and the limited ability for genetic manipulation in Chlamydia have hampered dissection of Scc4's contributions. Here, by developing bacterial systems that permit the controlled expression and stable maintenance of Scc4, we assess Scc4's effects on chlamydial growth phenotype, secretion, and the patterns of T3SS gene expression. Expressing Scc4 in Escherichia coli lacking a T3SS injectisome causes a growth defect. This deficiency is rescued by overexpressing the ß-subunit of RNA polymerase (RNAP) or by exploiting sigma 70 (σ70) (homologous to chlamydial σ66) mutants that strengthen the interaction between σ70 region 4 and the ß-flap, confirming Scc4's distinction as a module of RNAP holoenzyme capable of modulating transcription. Yersinia pestis expressing Scc4 sustains a functional T3SS, through which CopN secretion is boosted by cooption of Scc4 and Scc1. Finally, conditional expression of Scc4 in C. trachomatis results in fast expansion of the Chlamydia-containing vacuole and accelerated chlamydial development, coupled to selective up- or downregulation of gene expression from different T3SS genes. This work reveals, for the first time, the context-dependent action of Scc4 linking it to diverse protein networks in bacteria. It establishes that Scc4, when overexpressed, exerts incredible effects on chlamydial development by reinforcing control of the T3SS.IMPORTANCE The T3SS is a key virulence factor required for C. trachomatis infection. The control of the T3SS has not been well studied in this obligate intracellular pathogen. Here, we show that Scc4 plays a major role for precise control of the pathogenic T3SS at the levels of gene expression and effector secretion through genetically separable protein networks, allowing a fast adaptive mode of C. trachomatis development during infection in human epithelial cells.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/crescimento & desenvolvimento , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Transporte Proteico , Fator sigma/genética , Fator sigma/metabolismo , Sistemas de Secreção Tipo III/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...